If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+4a=96
We move all terms to the left:
a^2+4a-(96)=0
a = 1; b = 4; c = -96;
Δ = b2-4ac
Δ = 42-4·1·(-96)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-20}{2*1}=\frac{-24}{2} =-12 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+20}{2*1}=\frac{16}{2} =8 $
| 189=3(7-7x) | | 16+2x=42-x | | x+x+2=x+4-3 | | a-18=137/10 | | -(2x-3)=3-3x | | -7(1+4a)=161 | | -4n-8=-4(-3n+2) | | 75,000=10,000(1.09)7t | | 3x-1+10=50 | | 90+24^2^3+x=180 | | 5=6+k | | -8-6x=10+8x | | 6x+15=3x=6 | | -n/5=-10 | | -6(8-5v)=-198 | | 3x-3x/6=24 | | 2y-17=11 | | x+2x+2x+1=26 | | 90+242/3+x=180 | | -3x+9+4=3+x+6 | | 3x-3x/24=24 | | -4b=44 | | 33y=3 | | 5-9(y+9)=3+5y | | 3(2x+3)=5x+17 | | w/5-8=97 | | 3(2x+3)=5x+14 | | 5-3x-18=2-1+8x | | 2x+4+2x=2+3x | | 8x−6=2(4x+3) | | -4x+12=3x-9 | | 7x=13-x*x |